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Introduction

Overall progress during this perlod has been quite satis-
factory. A few problems were encountéred but they have not caused
any serilous delay. The graduate studenf who was employed on the
experimental phase of the program received én offer of a position
that he could not refuse. As a result he has left the Ohio State
University causing a slowdown in the experimental work. Because of
this, the effort to prepare a paper on stresses in the presence of
mixed boundary conditions, which requires the experimental data, has
been delayed and the task of beginning a parametrlc study of flutter
with thermal stresses and mode coupling has been moved up. Rising
costs coupled with the fixed resources of the Grant has forced the
principle investigator to reduce hils release time for the project to
only six percent as of 1 October 1969. ’

The work to be accomplished for the period 1 July to 31 December
was outlined in the Research Plan dated 29 August 1969. Briefly
stated, 1t and the projected manpower were as follows:

a. Conduct a two phase experimental program to,

1. Measure the thermal strains in the viecinity of the root
of both a rectangular and a triangular cantilever plate
and compare to analytical strains when the measured tem-
perature is used in the calculations.

2. Relate quantitatively the dynamic response to initial

deformation.
Manpower: one student, 1/2 time, 1 July-30 September

1/4 time, 1 October-31 December



Conduct a parametric study of thermal buckling eigenvalues
and vibratlion eigenvalues for symmetrical tapered plates of
constant thickness.

Manpower: one student, 1/3 time, 1 July-30 September
Prepare a technical report on the stress analysis work of

1 April-30 June, based on the previous Progress Report,
dated 29 July 1969.

Manpower: one student, 1/3 time, 1 October-31 December
Study the effect of variable thickness on the stress distri-
bution in thermally stressed, symmetrically tapered plates.
Manpower: one student, 1/4 time, 1 October-31 December

The progress on each task follows:

The Experimental Program

1. Thermal Stress: Strains have been obtalned for a
rectangular plate that verifies the previously obtalned
analytical solution along the free edge of the plate.

A one-quarter inch thick aluminum plate was clamped
between two steel bars of 2" x 2" cross section. Al-
though it is virtually impossible to achieve completely
the condition of zero strain in the chordwise direction
at the root, sufficient constraint did exlst to verify
the shape of the stress curve. The results of three
separate tests are shown 1n Figure 1. The temperature
distribution obtained in these steady state tests is
shown in Figure 2. Other tests, néf included hérein,
show that the root stresses vary, as prected, with heat

soak time. As the steel bars heat, they expahd and



relieve the root stresses. This occurs very slowly,
however, so that steady state conditions can be

assumed for any given reading. The location of thermo-
couples and straln gages is shown in Figures 3 and b,
Similar data are desired for a triangular plate.

Initial Deformation and Dynamic Response: Initlal
deformation and frequency data have been recorded for
several plates. The minimum frequency in every lnstance
has been observed to decrease as the initial deflection
increases just as the theory predicts. The equations for
quantitatively relating measured initial deflections to

the measured frequency are shown in Appendix I. A major
problem in this area is to obtain the temperature distri-
bution from which the buckling eigenvalues may be calculated
in the case of rapid heating. Steady state temperature
recording is available but transient temperature measuring
equation is not available in sufficient channels to pro-
perly define the temperature distribution. An indication
of how Iimportant the temperature distribution may be is
shown 1in Figures 5 and 6 from data obtained in AAE 710; the
fifth year laboratory course. In Figure 5, both the torsion
and bending freduencies are shown vs. AT with a plbt of

AT vs. time. AT 1s the difference béfween the temper-

atures at the plate edge and the plate center. It 1s
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indicative of the thermal gradients but does not reflect
the changlng temperature distribution as heat 1is con-
ducted through the plate. The plate was 16.67 inches in
length with a 10" chord. In the post buckled region its
deflected shape was observed to be as shown.
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The bending frequency 1is seen to be very sensitive to

the initial temperature distribution as indicated by the
initial non-linearity of the (w/mo)g curve; but when

the large bending deflections occur as sketched, the
bending frequency increases while the torsion frequency
levels off Note that the torsion response 1s not too
sensitive to the changes occurring in temperature distri-
bution as reflected by 1ts relative linearity up to

bending deformation.



In Figure 6 is presented the same information for the
same plate except that 6.67 inches was carefully re-
moved from the end, leaving a square plate, thus chang-
ing both the woB/on and A’I‘B/ATT ratios. In the post

buckled region, its deflected shape was observed to be

as shown:
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In Figure 6, the same sensitiveness of the bending
mode and lnsensitiveness of the torsion mode to the
temperature distribution will be noted. However, the
torsion frequency will now be observed to 1ncrease;
while the bending frequency levels off. This is as
predicted by the coupled mode theory when ATB/ATT

Increases. The bending mode response indicates that



it may be necessary to calculate the buckling eigen-
values at each polnt in time when the temperature
distribution has changed. If the buckling eigenvalues
should be relatively insensitive to the temperature
distribution, a considerable reduction in the calcu-
lations for flutter would result.

b. Parametric Study of Frequencles and Therﬁal Buckling

Eigenvalues for Tapered Symmetrical Plates of Constant
Thickness

This phase for nine term deflection functions and a silxteen
term stress function has been completed. The results pro-
vide information about the bounds for frequency ratios and
buckling eigenvalue ratios that are needed for the para-
metric study of flutter. The frequency data are presented
in Table I. Plotting the frequency ratios 1ndicates that,
for a cantilever plate, the minimum value of woB/on
approaches unity as the plate aspect ratio approaches zeroj;
i.e., the second mode frequency is never less than the first
mode. This is contrary to our experlence with cantilever
beams where it is well known that the bending frequency may
exceed the torsioﬁ frequency. The importance of the fre-
quency ratio as an influence on the mode coupling 1s shown
in Appendix II of the attached revised paper, "Modal Coupling
in Thermally Stressed Plates". An errorvin subtraction in

the original paper covered up fhe fact that mode coupling is



affected by the frequency ratio as well as the buckling
elgenvalue ratio. For plates of relatively large aspect
ratio, i.e., greater than unity, the frequency ratilo,
woB/on’ is small and may be taken as zero. However, for
small aspect ratios, woB/on appears to approach unity and
cannot be neglected. One set of parametric curves for all
plates, for which the ratio of first mode thermal buckling

to second mode thermal buckling is. ATB/ATT = 1.1, and the
initlal imperfection parameters are, wi = .1, and ¢i = .02,

is shown in Figure 7. Note that the frequency ratio, which

is a function of the planform shape, thickness distribution,
material properties and boundary conditions, can have a

marked effect on the post buckling behavior of plates. These
effects have not been noticed in the laboratory because the
plates tested to date have all had very small values of
woB/on' Further investigation, both analytically and
experimentally, 1s 1ndicated.

The thermal buckling eigenvalues are presented in Table II.
Figure 8 shows a typical plot of the assumed temperature
distribution used in the calculations. In all cases, the
temperature was assumed such that the isotherms were parallel
to the plate edges. Since the eigenvalues»are functions of
the temperature distribution, eigenvalues for other temperature

distributions have been evaluated but are not included in

this report. They lndicate thét, although the individual



eigenvalues may change considerably, their ratio (the im-
portant parameter) does not vafy appreciably as the form

of the temperature surface changes. The temperature dis-
tributions investigated do not include any that would be
similar to that existing in the initial part of rapid heat-
ing discussed under item a.2. At this time, 1t appears that
the 9-term deflection function for symmetrical bendihg may
not be sufficient to define the bending bucklling mode for
all aspect ratios and tapers. A 15-term solution was used
in a few cases to assure that the 9-term solution 1is ade-
quate. The 9-term solution for vibration had previously
been favorably compared to both solutions in the literature
as well as exéerimental data. The buckling elgenvalues ob-
tained when 15-term deflection functions were used are shown

for comparison to the 9-term answers:

| Terms KB KT I‘B/I‘T
AR = .75, B =1 9 45.989  41.049  1.1203
15 45.368  140.973  1.1072
AR = 1.67, 8 = 1 9 558.04 501. 4 1.113
: 15 531.52  1499.07 1.065
AR = 2.0, 8 = 1 9 1110.5  928.67  1.1958
15 971.16  927.07  1.0476
B = .4 9 3024.5  2970.6 1.018
15 71.157  2944.7 02416
B =0 9 4946.2  14953.0 .9986

15 131.37 4900.4 .0268



The values shown indicate that the buckling eipgenvalues

are probably sufficlently close fof B =1 up to an aspect
ratio of two. But as B decreases for an aspect ratio of
two, the bending buckling eigenvalue decreases drastlcally.
More work 1s to be doné in this area. The difficulty may
very well be two-fold: 1) the eilgenvalue subroutine may be
breaking down because the mid-plane energy matrix becomes
ill-conditioned and/or 2) although observation of experi-
mental buckling deformations shows that the torslon buckling
mode does not differ appreciably from the torsion vibrationr
“mode, page 5, the bending buckling mode appears to differ
considerably from the vibration bending mode in both the
degree of chordwlise deformation and in the degree of bending,
page 4, thus requiring higher order terms in the assumed
solution. It may be of interest to note the savings in com-
puter time as a result of formal integration of the matrix
elements. Using nine term deflection functions and a six-
teen term stress function, the present program on the IBM 360
will produce nine symmetrical (bending) vibration modes and
frequencies, nine symmetrical buckling modes and elgenvalues
and nine antisymmetrical (torsion) vibration modes and fre-
quencies and nine antisymmetrical buckling modes and eigen-
values in 1.2 minutes. For comparison, a similar program,
using numerical integration, on the IBM 7094, to produce one

bending vibration mode and frequency, one bending buckling
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mode and elgenvalue, one torsion vibration mode and fre-
quency, and one torsion buckling mode and elgenvalue,
requires 43.08 minutes.

c. Stress Analysis Report

The work scheduled for this task has been replaced By work
noted below that was originally scheduled to begin 1 January
1970.

The parametric study of flutter in the presence of thermal
stresses: The equations have been derived and a computer
program written whereby regions of stability méy be pre-
dicted for various combinationsvof parameters. The pro-
gram has been 'debugged' and work on the parametric study
has started. Further definition of the bounds of some of
the parameters is needed to avoid making runs into physically
impossible reglons. It is expected that more detailed work
and research into the linear problem may lead to a suitable
definition of the parameter bounds. The equations and a
sample of the results to date are given in Appendix II.

d. Effect of Variable Thickness on Stress Distribution

Problems have been encountered in the formal integration
of the matrix elements for this work. The thickness func-
tion appears in the denominator of one integrand and al-
though formal integration can be acccmplished, it will save
little computer time because of the many additional calcu-

lations that must be made; e.g., a linear thickness variation
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of the form, t = ax + by + ¢, would require an order of
magnitude times as many calculations for each matrix element
as is required for the constant thickness plate. In view

of the fact that the matrix elements for both varlable thick-
ness and non-symmetrical planforms can be computed in the
same time as that required for constant thickness plates of
symmetrical planform by numerical integration, the numer-
ical integration scheme becomes more than competitive for
plates in general. A program for symmetrical plates of
constant thickness has been written and successfully used
with the IBM 7094 Computer to check the results of the

IBM 360 program where formal integration was used. That
program 1s presently being adapted to the IBM 360 where 1t

is expected that each set of eigenvalues for either uniform
or non-uniform plates will requlre about ten mlnutes of com-
puter time. The program is now ready for a finai check run.
Once it 1s operational, it may also be applied directly to
accomplish that part of the work scheduled for 1 January 1970
to 30 June 1970 pertaining to the thermal buckling and

vibration eigenvalues of non-uniform plates.

Conclusion

Although operating costs have increased, considerably pro-
gress has been made during this report period, especially in view
of the loss of one graduate student and the necessity for a

reduction of participation time for the principal investigator.
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A block diagram of the problem, showing the relationship of the
different facets on which work is being accomplished, is shown
in Figﬁre 9. Each block represents an independent problem, once
the inputs into the block are known. Thus parametric studies
may be conducted at any point; but, when an explicit 1lifting sur-
face structure and flight profile are speclified, then the solution
must proceed iIn an orderly fashion from temperature input to
aeroelastic output.

All work to date has used an assumed temperature distribu-
tion or a temperature distribution obtained from experiments
with radiant heat lamps. We still intend to prepare a report on
the thermal stress distributlion in cantilever plates but some
additional work in this area 1s also required.

At present, the different facets of the problem are beilng
~attacked separately. Ultimately, it is expected that all of the
computer programs will be unified into one single program to yield
answers to both static and dynamic aerocelastic phenomena for any

applicable set of inputs.
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CoAsroaNDiA L
The total energy of a plate m2y be expresscd as the energy of
the perfect plate plus the change ln encrgy due to arbitrary initial

deflecﬁions as follows:*

ST = 5[” D[C W) +@T)v+ >V ?Lf ?Dq, + 20 V>(a ay) ]JZJ/
+‘£U -%};@f){r —3:7%67)» QZSVDFJ%Z%)] drdy
ﬂ 'zmp)*(w)b v;f%?’f 12 -w)(“‘f:)}mz;

~ ff«'r[%{i +%37}—3:]fo/; -—/ z WJ‘/J%‘{*[(B&L)+F7V)OI{

c

D () W) ) . DLW Qzu ) ”
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o'w/ D‘vw Blw gw )\wg wh ):u_) %:M o Y )
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T‘F Jw RERW e ouk) .

ff [“‘ 9%/ 9)( ) Lm,z VEPL Jf-J/,

tf[Fwsay] =0

e

lastic = W+ Wi

* See page 7 of the attached paper, "Modal Coupling ind Tnerwally
Stresased Flates".



Assuming W to be a linear combination of the small deflection
modes as In the attached paper and following the definition of tsrms
and procedures of tanat parer gives freguency equations and static

deflection equations of the samwe form as in that paper:

) e Dol ey v o]
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A comparison of tnese equatiouns with those of tne attached

report shows that:

ﬂ Va +‘[1 ¢&

Is, 13 s 1g » and 17 are as deflned 1n the attached paper.

The application of the theory to arbltrary lmperfectlions may

be evaluated by the following steps:

1.

2.

Measure the iInitial shags of a plate.

Cbtain the freguency at some measursd temperature distributlion
and magnitude.

Obtain the buckling elgenvalues for the perfect plate, [ and{l)
using the temperature distribution at whlen the frequency

was measured. At thls time; all integrals involved 1n thé
linear solution may be evaluatsd.

Evaluate I;,; and Iy, from the weasured shape data 2nd perfect

plate modes.

. Evaluate ¥ and {. from thetr definitions.

Evaluate Il} from Iy = n"VA WANE

Use Iy 5, I35, @nd 133§y the non-linear equations to



calculate the frequency response for the temperature magnitude
at whlch the freguency was measured.

8. Compzre analytical with experimental results.
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Modal Coupling in Thermally Stressed Plates¥
Cecil D. Bailey

The Ohio State University, Columbus, Ohio

Abstract

An approximate, but general, solution for the frequencies,
thus the effective stiffgesses, iﬁ the first and second modes of
initially deformed, thermally stressed plétes of any planform
shape and with any boundary condition is found in terms of quan-
tities that may be obtained from the application of linear theory.
It is shown that &ll plates éxhibit the sam~ characteristic
changes in frequency, thus stiffness, independent of planform
shape, houndary conditions and temperature distributicn except as
these factors affect the thermal buckling eigenvalues (AT crit-
ical) and the natural, uniform temperaturs freguencies. Coupling
between the modes is'shown to depend upon the ratlio of the therma
buckling eigenvalues and the uniform temperature frequency ratio.
Analytical data are presented to show that the second mode stiff-
ness for a plate for certain values of the parameters does not
always increase in the post buckled region as 1lmplied in the 1i£er—
ature. Experimental data; obtained from cantllever plates of

different planforms, are presented to show that mode coupling is

*Supported in part by the Air Force Institute of Technology and by

the Office of Aerospace Research, USAF.



readily detected, and cannol be neglected if a correct predictilon

of the effective stiffness of a pléte is desired. The analysis

may readily be extended to any desired number of modes. Only a

qualitative comparison 1s made between theory and experiment in

this paper.

A carefully controlled test program will be required

to produce data for a quantitative comparison.

Q-0 = g 0

-

l’

10

AT

AT

List of Symbols

Normal coordinate for the first mode
Large deflection stress funétion para.aneter

Plate stiffness, Et®/12(1-v?)

Modulus of elasticlty

Large deflection stress function

Small deilcction stress function

Definite Integrals involving functions wl, W2 and G
W§rk done by the stress over that part of the
boundary on which the displacements are prescribed
Temperature distribution over the surface of the
plate |
Reference temperatur: at which buckling in first
mode occurs |

Reference temperature at which buckling in second
mode occurs

Plate thickness



i
<

W

W

v

W

P(x,y,1)
o

r

Displaccement in the x and y directions respectively
on that part of the boundary where the displacements
are prescribed

Total displacement of elastic surface from the x,y
plane

Second derivative with respect to time

Initial displacement of elastic surface from the
X,y plane. Also called initial imperfection and/or
initial deformation.

First mode from linear éolution

Second mode frem linear solution

Sum of forco$ per unit arsza normal to the plane of
the plat~, P(x,y,t) - p W

Applied 1oéd over plate surface

Thermal coefficient of expansion

Energy due to heating or thermal loading

!ftaT(ox + cy)dxdy ‘

Value of T at which the perfect, unloaded plate
would bﬁckle In the irst mode

Value of T at which the perfect, unloaded plate
would buckle in the second mode

Smsll amplitude'dynamic displacement of first mode
Small amplitude dynamic displacement of second mode

Normal coordinate for second mode

x.



v Poisson's ratio

p Density per unit volume

T Time

¢ Non-dimensionalized normal coordinate for secohd
mode

V] | Non-dimenslonalized normal coordinate for first
mode

¢ Non--dimensional large static deflection, secohd
mode

¥ Non-dimensional large static deflection, first
mode

w Frequency of small amplitude vibration about 1argé

amplitude static eyuilibrium position

wol First mode, free vibration frequency, at uniform
temperature
w02 Second mede, free vibration frequency, at uniform
tenperature
Introduction

Heldenfels and Vosteen2 showed that the second mode (tor-
sional) frequency and stiffness of a thermally stressed square
cantilever plate always increases after reaching some minimum
value as the temperature increases., The minimum stiffness 1s
dependent upon the initial deformation. The.solution obtained 1is

shown in Figure 1, where the paraneter ¢i is a measure of the



initial twist in-the plate. They tested a square cantilevef
plate which had initial deformation in both the first and second
modeé. The plate and its initial éhape are shown In PFigure 2.
Their plot of experimental data which verified thelr analytical
solution is shown in Figure 3.

Breuerll verified the results of Heldenfels and Vosteen and
extended the solution to plates of other aspect ratio.

Bailey3

extended the analytical results of Heldenfeis and
Vosteen and showed that their solution for the seccind mode 1s
also the sqlution for the first mode when the two modes arc
uncoupled. It can readily be shown by use of the theory of
orthonormal functions that it is the solution for aﬁyvuncoupled
mode. However, in conlucting an experimental investigatvion of
tapered plates iﬁ the pre-buckled reglon, it was noted that in
those instances when the heat was left on longer than usuél, the
second mode fvequency did not increase after reaching a.minimum
but leveled off, indicating that the stiffeniﬁé effect as recorded
by others was not present. The fully tapered plate was the only
exception. No attempt was made to-explain the cause of this
phenomena until more recent wdrkvwas accomplished. That work is
reported herein.

The terminology, first ahd second modes, is used to imply the

generality of the solution to both symmetrical and unsymmetrical

plates. 'Bending' and 'torsion' could be used, but these terms
s ' :



appiy, in a étfict sense, to symmetrical plates'where in linear
theory the symmetrical (bending) and antisymmetrical (torsion)
deflections are completely uncoupled. For an unsymnetrical plate
in linear theory and for all plates in non-linear theory, all
modes are plate bending modes céntaining'both symmetrical and

antisymretrical deflections.

Statement of the Problem and Baslic Equations

Given an initially deformed plate of any planform shape,
boﬁndary conditions, and thickness distribution (provided the
thickness distribution permits the assumption of thin plate
theory), find the frequsncy, thus the effective stiffnéss, vhen
the plate is subjected to thermal stress and large deflections.
It is further assumed that the linezr solutions to the small
deflection problem of the perfect plate for specified boundary
conditions, thickness distribution and planform shape are known.
(By linear solutions is meant the small deflection solution to
the vibrations problem when no tharmal stresses are present, and
the solution to the in—planevthermal stress problem when no
displacements normal to the plane are present).

Since there is no exact solution to the differential equa-
tions of this problem, an approximate solution is obtained by

using Relssner's Variational Principlel for large deflections:
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In the application of this minimal energy principle the
generality of the large défleétion solﬁtionuobtained is a result
of the ofthonormal functions chosen for the deflection function.
'Two functions must be assumed: thevdeflection fﬁnction, W, and
the stress function, F.

The deflection function 1s assumed to be,
W(x,y,T1) = B(T)wl(x,y) + e(T)Wé(x,y)

where wl(x,y) and wz(x,y) are therfirst and second bucklihg or

".



vibration modes,las determined from the linear éolﬁtion of what-
ever plate problem happens to be préscribed. Thus, these func-
tions are orthogonal and satisfy the plate displacement boundary
conditions. B and 6 are undetermined parametecrs, in thils case
nornial coordinates, for the imodes wl and w2. Although it is

arbitrary, wi, the initial displacemcnt, is taken to be the same

functional form as the large deflection mode,
Wi (x,y) = By Wi(x,y) + 64 Wz(x,y{.

Bi and Gi are the measured amplitudes that define the magnitude of
the initial displucement.

The stress function for large deflections 1s assumed to be
F = C(T) G(X,Y)

where . G(g,y) 1s tﬁe stress_function obﬁained from a linear solu-
tion of the stress distribution; thus, 1t satisfies the stress
boundary conditions for whatever planform shape the plate may have.
C, B, and 8 are undeterﬂined parameters that must be found from
‘the application of Reissner's variational princible.

Substitution of the assumed functions into the variational
equaﬁion yields three equations In the three unknowns:

. I : I 1.
B+ fg(B~Bi) +C 53 B = fﬂ (1)
1 1 1



. I . Ia ,

6 + Té(o -0 +C %10=-u9 (2)
5 5 | 5 :
I I r I |

¢ = -3(82 - B2) + —L(02 - 02) - — - 2 (3)
I, I, I, I |

where, the Ii, i=1, «-++, 9, are numbers obtalned from evalua-
tion of definite integrals in the linear solution. These

integrals are given 1n Appendix I. 1 is known from the pre-

10

scribed boundary conditions and is taken to be zero in this paper.
Substitution of the third equation into the first two yields

two equations from which B and 6 may be determined. From these

equations it may be noted that no coupling exists unless large

deflections are present.

. I I 12 1.1

B+ B--‘?-[l B I WY e S APEIYS
I, I,I, 1,14 I,T,
I,1 12 I I (4)
1alg 119 1 1
I I 12 1.1

o+ 9*§T1 - —Lr - Loz 4 3 T(p? - B2)
I Tglg IcI, Il
Il A0 I

710!’“1;93="§+§§91

Ielg - Islg 5 Is

As a result of the choice of assumed functions, an examina-

tion of the linear equations will show that for I = 0 (Reference

10
2, 3, or U):

1



._2_ = w2
Iy °
I,1
2-9 _
I3 Mleritical
.I_H_ = B
12 o
—I—-Cav =. wz
I o
1gig

—l =

I7 I12critical

3

the first mode, uniform teﬁperature free
vibration freq&ency.

the first mode, uncoupled, unloaded, perfect
plate thermal buckling parameter for the
prespribed temperature distribution.

the first mode deflection under any applied
load normal to the plate surface.

the second mode, uniform temperatureAfree
vibration frequency.

the second mode, uncoupled, unloaded,
perfect plate therma;_buckling parameter for
the prescribed temperature distribution.

the second mode deflection unlder the applied

load normal to the plate surface.

Now divide equations (4) and (5) by 12/1l and 16/15 respectively,

make the foregoing substitutions followsd by the following

coordinate transformations:

o™
t
o

—
—

p? =

$2 =

T =
N
@
N

The resulting equations are:

g



__w__ + w[l - .P__ - 'Q)Z + £§(¢2 - ¢2) - ”:E‘l‘o““l‘+ 11)3 .= IIJ + w (6
wél Iy ! Ty * REEEEg. ° s |
_gf— + ¢{1 -2 gy - Vi) - 7:‘*1*%‘2_] R
Wy , r2 r2 G-m_?% |

2

When the displacements over that part of the boundary where
the displacements are prescribed are zero, the integral I10 = 0.
Other wise, it is seen that prescribing boundary displacements
will cause the same trend of stiffening as oprescribing T, wi, or
by -

It is possible that Iu, 18, and 110 as well as T may, any
one or all, be functions of time, in which case the problem would
be a largevamplitude vibraticn problem under,atrmost, four
different forcing functions.

The assumption is now made that IM’ 18, and IlO are not
functionsvof time and‘that éhe rate of change of the-displace—
ments as a result of the rate of change of T with time is
sufficiently slow that the deflections caused by temperature may
‘be treated as a statics problem. Thus, under heat inéut in the
plane of the plate and load normal to the plane, the plate may
undergo large static deflections about which sméll anmplitude
d&namic oscillations may occur. The square of the frequency of
theseoscillationsis a direct measure of thé éffective stiffness

in the mode and at the displacemenﬁ under investigation.
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To find the frequency of the small amplitude oscillations

(see Appendix II) let,

+ Y

-<-
11

£y
¢>=s:¢+<1>

Substitution of these quantities into equations (6) and (7)

produces two equations for the frequenciles when (wol/wo?)2 << 1,

R R R G A (8)
Yo 1 1 o=
(——— = 1 - — + 302 - 82 4+ (V2 - Y¥) - —— (9)
2 i B § -
Yo - I‘2 ) 'y o §%§£9rl
Sir.:e wi, ¢i; ', and I10 are specified_quantltics, it is only

necessary to find ¢ and Y in order to calculate the frequencies.
Setting the inertial terms equal to zero in equations (6) and (7)

yields the static deflection equations,

¥ 4 w[l D D2 ey - 20y sy (10)
T "Y1 'T T %1 Thgtr| o i '
1 1 [} 2o
T T Iqp 0
0 .
83 + @{1 e 2 Eeyr g2y o 220 o 4 g (11)
1 1 : o 1
Ty I, ﬁggggéj

Tnerefore, the problem reduces to that of finding ¢ and Y
from the above two equations and then substituting these results
into equations (8) and (9) to get the effects on frequency and

stiffness. Note that the ratio of the thermal buckling eigenvalues,

(2



I‘2/I‘l (or, AT2/AT1, see Appendix III) determines the degree of
coupling for the large amplitude, static deflections. Both the
thermal buckling eigenvalue ratio and the uhiform tenperature
frequency ratio, wol/w02, influence the degree of coupling in the
frequency equations. In equations (8) and (9) the frequéncy
ratio, mol/w02, has been assumed sm211, thus ité influence on the
. coupling has been omitted. A parametrlc study has been made of
equations (8), (9), (10) and (11) for values of thermal loading

ratio, Y/F2, from 0 to 2.0 and for various combinations of the

n

paramcters, I’l/I‘2 ATl/AT2, ) and Vs with I = 0.

10
It was found [lrom the parametric study that for ATl/AT2

i’

sufficiently greater than unity, the second-mode frequency
always ircreases after reaching a minimum ~as prédiated in
Reference 2. However, it was also found that the first frequency
levels off after reaching a.minimum regardless of the magniltude
of the initigl deflections, wi and ¢i. But it was also found
that for ATl/AT2 sufficiently less than unity, the first mode
frequenéy always increaées after reaching a minimum while the
"second mode levels off at a minimum; agalin independent of the
magnitude of the initial deflections.

The interesting results occur when ATl/AT2 is sufficiently
close to unity. For ATl/AT2 = 1 the relative magnitude of the
initial displacement parametefs conﬁrol which mode increases and

which levels off, although it 1s possible that both may inérease.

r, -



For AT./AT, sufficiently close to unity, the ratio of A'I‘l/AT2

1 2
combined with wi and ¢i determines the frecquency response. The
effect of wg)/wo, remalns to be investigated.

A quaiitative comparison of parametric study results with
éxperimental frequency data for ATl/AT2 in the neighbornood of
unity is shown in the following figures.

The experimental data recorded at the Air Force Institute of

Technology are shown in PFigures 4, 5, 7, and 8. .

d ¢. are
i an ¢1 are

not known, but the ratio ATI/AT2 for the rectangular plate, Fig.
I, was calculated as 1.029. Note that the first mode frequency
‘increases while the second mode frequency levels off. Figuré 5
shows the same phenomena for a slightly tapered plate.

Figure 6 shows the paranetric réspoﬁse for thercoupled first
and second modes of a plate for which,

ATy
AT

lpO = ¢O = IlO =0, (L‘)O;L/“’Oe)2 << 1

= 1.0, ¢; = 0.02, ¥; = 0.1

The first mode frequency increases after buckling while the .
second mode levels off, Just as in the experiment.

Figure 7 and Fig. 8§ show the experimental results fpr'highly
tapered plates of the same aspect ratio and thickness as the prev-
ioﬁsrplates. The calculated values of ATl/AT2 > 1.1 are shown 1n
the figures. For these plates, the second mode frequency
increases in the conventional manner while the first mode levels

off. Again, wi and ¢i are not known for the plates although no



initial deférmétion vas discernable by visual inspection.

Figure 9 shows that for ATl/AT2 ='1.1, the analytical
résponse has the same trend as the experimental data when the
initial imperfections are very small. It should be noted that
the initial slope of the frequeﬁcy response curves 1is affected
by the initial deflection. Therefore, extrapolation of experi-
mental data to obtain ATl aﬁd AT2 may lead to erroneous results.

A comparison of theoretical to experimental results from
Reference 2 is shown in Flsure 3. The theoretical curve does
noticontain any effect of initial deformation in the bending
mode, although the initial plate shape, Figure 2, indicates
quite large bending and camber. Thus, the effect of finite wi
is present in the experimental Zava.

Figure 10 shows two curves for ATl/AT2 = 1.1. The dashed
curve is for ¢i = 0.06 (about the correct value), and wi = 0,
which would be representative of the analytical curve in Figure 3.
The soiid curve in Figure 10 occurs when wi = 0.2 and would be
representative of the eiperimental curve in Figure 3 which may

explain ir part the disagreement between experiment and theory

in Reference 2.

" Conclusions

Both experimental and analytical data indicates strong
coupling between the first two modes of plates with in-plane

stresses. The onset of significant coupling varies with the
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initia} imperfections and with the ratio of in-plane buckling
parameters, ATI/ATE. |

For mol/w02 sufficiently small, thevpost buckling behavior
of plates for which ATl/AT2 # 1, is determined by the rafio
ATl/AT2. If ATl/AT2 is sufriciently less than 1, the second
mode frequency will always levei off and the first mode frequenéy
will increase, whereas for ATl/AT2 sufficiently greater than 1,
the first mode will level off énd the seéond node will increase.
For ATl/AT2 sufficiently close to 1, the rclative magnitudes of
the initial imperfections will determine which mode levels off
and which mode increases.

Equations (8), (9), (10), and (11) and Appendix II shows that
the small qmplitude vibration freguency about the large emnlitude
static equiiibrium position is indevendent of planform shape,
boundgry conditions, thickness distribution and temperature
distribuﬁion except as thesé factors affect the thermal buckling
parameters and the uniform temperature frequenciles.

The influence of wol/w02 remains to be determined. Experi-
mental data for quantitative comparison of theory with experiment
needs to be obtalned including a more careful quantitative evalu-
ation of arbitrary initial imperfection than is given in Refer-
ence 2. Furtﬁer, the essentially second order purturbatlion on
the linear theory presented herein should bevévaluated as to 1ts
range of validity by comparison to experimental data obtained

., -
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under'carefully controlled conditions.

. Appendix I

The Ii are nine integrals of known functions over the plate

surface and are known quantities from the linear solution.

[
I, = ptWidxdy
1/
[[ 782U, 1320, 1, 32v. 9% T3 Y
I, = ||pe =2+ —2 +2v—2 L4+ 2(1-v) —2 axay
Jb ol ex? ay? 3x?  ay? L 9xdy
[ "a2 2 v 2 . 7
IR 392G OW. 12 , 3 G(ahl]z 32G W, AW,
5 " ~—~-;(——— ——=1 - dxdy
J] o ax*iay oy2lox | axdy dx 3y
[
I, = P wl dxdy
[ f
= 12
I ptil dxdy
J )
[[ 732V, ¢, 192w, 32W, ?%W 1 32W, 1\ 2
Ig = ||D =52 ¢ 2 2v—y® 2 & 2(1-v 1272} axay
tox® | oy } Ix 3y | axoy
J L v
(1 '32G W, ,  9%G 8W, » 32G oW, AW,
. 2 J9¥o 2 Yo
I, = ||t —5 —= 4 — —S° -2 dxd
7 J 3x? 3y dy? 9x | 3xdy 9x dy 4
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- 7
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9 E 3x?, dy? ax2 3y? 7 axdy
JJ ~ N !
[ Tyea = a2 ! |
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Appendix II

The equations of motion are:

Y SRR FCINY S . 1
n,\él I‘1 * ’rl : n&é:?% ° !
6 r r 1
1,2 .2 10
—— 4+ ¢ 4 9l - o - 67+ =(WE-yl) - -] = e ¢
o, r, + I 1 nessE °o 1
Assume:
Yy = ew + ¥
¢ = e¢ + ¢
Substitute:
-é—"”——+(s + ¥)? + [e +‘?]['1—L—¢?+E2-((e + ¢)2 - ¢2)
wél % v Fl 1 Fl ¢ i
I
10
- =1 =9_+ 9
=
i I - - 2 1ﬂ1<» )2~ 2)
2 4 (e, + ) 4+ [e, + ¢J[1 - — - ¢ + —((e, + ¥)" - ¥
2 ¢ i i
P ¢ T r, V¥
Ig

Neglect all 2nd and higher order terms in ¢ and neglect 2ew/? and

2€¢/© compared to unlty. Subtract away the statlc deflection

equation in each case to obtain:



€ T - r I ‘ r

V4 [1 - — + 3¥2 - y2 + _?;(Q,z_d)z) - ———Je, + 2 — ¥%e¢, = 0
2 : i i i ¢
wol | Fl Pl | ﬂ":’-}(—}_’—i’:r-? 2 Fl

E¢ r . ry : ’ r]

—2— ¢ [1 - — + 392 - ¢; + —-(\yz wi) B o + 2 == ‘r’@ew = 0

“op T b l@égf
Assume that the-small amplitude vibration will be simple harmonic
(experimentai evidence supports this assumption). The result of
setting the determinant of the coefficients equal to zero is the

frequency equation,

[ wd J wd | 2 1
\ D=l r o] FO(C, - o)+ 16 —F v2e?)7)
02i1,2 2 Yoo “op ”02
whére:
r r I
3 2,22 2 10
C, =1 - —+ 3¥%2 - p? + -S(9? - ¢2) - —/——-
VTR A
1 1 - )
r ‘ r I,,
I e K HE L CEE R P I
2 2 ~6?*9F

For most practical plates the frequency ol the second mode 1is
.much greater than that of thghfirst mode. Thus, the square of the
ratio, wol/mOZ, may be assumed to be mugh smaller than unity caus-
ing the last term in the ffequency equation to become negligibly
small. Note, also, that if either ?vor $ are zero, this term

vanishes. The frequency equation then becomes,

2 2 2
w w w
—_ 1 21 o1



from which:

' 2 [ 152 Wo
(:)_ = 9] | =2 = ¢ (8)
0ly iTez2 ey
—— = = C (9)
2 2
Wo > CUO2 5

Appendix IIT

The thermal loading term, TI', occurs as:

I = I[atT(x,y,r)(ox + oy)dxdy

Assume that the surface temperature function T(x,y,T) may be

written relative to some reference value ATref or:

T™(x,y,T) = ATP&;I"(T) f(x,y)

Thus :
T = ATref[Iat f(x,y) (o, #+ oy)dxdy
and
Peritical = 4Trer criticalf[at Flx,y)(ox + oy)dxdy
Thus:
T ) Alref
r . AT .
critical ref(ecritical)
Also:



r AT

AT

ref(critical)first mode _ 1

I's AT

ref(critical)second mode

AT,
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Fig. 1. Response of Uncoupled Modes, Réf.
Fig. 2. 1Initial Plate Shape, Ref. 2

Fig. 3. Frequency Response, Ref. 2

Fig. 4. Frequency Response Vith Coupling
Fig. 5. Frequency Response With Coupling
Fig. 6. Frequency Response With Coupling
Fig. 7. Frequency Response With Coupling
Fig. 8. Frequency Response With Coupling
Fig. 9. Frequency Response Wwith Coupling

Fig. 10. Frequency Response With Coupling
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